Egstitan.ltx

```
Printed: 12/12/96
      By: Kliore, Arv
Priority: Normal
   Topic: cop_abs.tex
Sent: 12/12/96
      To: Arvydas .J.Kliore@jpl.nasa.gov
    From: EGS Office ( 12/12/96 )
Mail*Link<sup>2</sup> SMTP
                     cop_abs.tex
\def\vers@copabs{1996/10/21 1.3 (PWD)}
\documentclass{article}
                                      % For the new
\usepackage{cop_abs }
LaTeX2e
\meeting{EGS}
\meetingplace {Vienna}
\meetingdate{April, 1997}
\title{Cassini Titan Radio Science)
\author{A.J.Kliore, J.W.Armstrong, J.D.Anderson, N. J.Rappap
\mainauthor{A.J.Kliore}
\address{Jet Propulsion Laboratory, California Institute
of Technology, Pasadena CA 91109, USA}
\author{R.Ambrosini}
\address{Istituto di Radioastronomia, CNR, 40129
Bologna, Italia)
\author{B.Bertotti }
\address{Universita di Pavia, I-27100 Pavia, Italia}
\author{F.M.Flasar}
\address{NASA Goddard Space Flight Center, Greenbelt, MD
20771, USA}
\author{R.G.French}
\address{Wellesley College, Welesley, MA 02181, USA}
\author{L.Iess}
\address{Universita di Roma "La Sapienza", 00184 Roma,
Italia}
\author{E.A.Marouf}
\address(San Jose State University, San Jose, CA 95129,
USA }
\author{A.F.Nagy}
\address{University of Michigan, Ann Arbor, MI 48109,
USA }
\corresname{Arvydas J. Kliore}
\corresaddress{Jet Propulsion Laboratory\\
                4800 Oak Grove Drive\\
               Pasadena, CA 91109\\
               USA }
```

```
\corresphone { 001-818-354-6164 }
\corresfax {001-818-393-4643}
\corresemail{akliore@jpl .nasa.gov}
\event{PS4 Titan's atmosphere and surface : recent
developments}
\organizer{Dr. Athena Coustenis, Prof. Frederic W.
Taylor }
\equipment{none}
\oralonly
\begin{document}
The Cassini Radio Science instrument consists of two
principal parts. On the spacecraft
there are the Radio Frequency Instrument
Subsystem(RFIS), which consists equipment
devoted entirely to radio science, and the Radio
Frequency Subsystem(RFS), which is
mostly devoted to spacecraft telecommunications, but
which also contains the Ultrastable
Oscillator(USO) . Between them, these subsystems provide
the capability to transmit signals
at three frequencies - X-band (3.4 cm), S-band (12 cm),
and for the first time, Ka-band ( 1 cm),
whose frequency can be referenced either to an X-band
uplink, a Ka-band uplink, or to the
USO. On the ground, there are the 70 m antennas of the
DSN at Goldstone, California,
Canberra, Australia, and Madrid, Spain to receive the X-
and S-Band signals, and a 34 m
station at Goldstone instrumented to receive X- and
Ka-band signals. It is expected to also
have available non-DSN Ka-band stations in Italy and
possibly Japan.
The two principal radio science investigations at Titan
are atmospheric and ionospheric
occultation experiments, and gravity field and celestial
mechanics observations. The objectives
of the occultation experiments are: to determine the
global fields of temperature and pressure
in the middle and lower atmosphere of Titan at high
vertical resolution down to the surface,
from which the latitudinal dependence of zonal winds can
be deduced; to constrain the
distribution of tropospheric methane and the surface
relative humidity; and, to conduct a
search for Titan's ionosphere. This will be done by
observing the effects refraction and absorption
on the S- and X-(or Ka-) band signals during
occultations, which must occur at a wide range
of latitudes.
The objectives of the gravity field and celestial
```

Egstitan.ltx

mechanics measurements are: to determine the gravity field and measure the tidal deformation changes between perikrone and apokrone; and to improve the knowledge of Titan's ephemerides. Determination of the precise nature of Titan's gravity field will reveal its internal structure and determine the extent of differentiation and the presence or absence of a metallic or silicate core. These experiments will be carried out by means of 2-way or 3-way Doppler tracking and ranging. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under NASA contracts.

\end{document}